Skip to content

Posts from the ‘PerformancEDU Education’ Category


Fuel for Speed: ULTRASLIDE Slideboard for Skiing & Ice-Based Training

 With the onset of fall weather and only 137 days until the 2014 Winter Olympics in Sochi, Russia, anticipation is mounting for some of the most popular competitions including skiing. The ULTRASLIDE Slideboard lends itself inherently well to off-ice training for athletes who compete in ice-based sports given the occasional limitations on access to ice. Skiing is no exception.
Marc Digesti,
Founder of PerformancEDU Training Facility
Marc Digesti, former U.S. Disabled Ski Team Strength Coach and Director of Performance of PerformancEDU Training Facility utilizes the ULTRASLIDE Slideboard for multiple diversified training programs in his in Tahoe, NV facility. Recently Marc shared his perspective on why the ULTRASLIDE is so effective for his skiers, elite athletes and more.

U: What is your experience with skiing?

M: I grew up in the Tahoe area ski racing until high school. After playing baseball in college and graduating with a degree in Exercise Physiology, I was hired as the Strength Coach for the U.S. Disabled Ski Team. In this role, I traveled, designed and implemented training methods for our athletes including testing protocols.

U: What are the most important training objectives for skiers in general?

M: The most important training objective is to get ski athletes powerful while not limiting their mobility and stability movement patterns. They need to be solid and strong but flexible to anticipate the changes in direction and terrain.

U: What are the most challenging training aspects for skiers?

M: The most challenging aspects of training skiers is their rigorous in-season travel schedule. We have to create a very objective periodization for their off-season dry land training. More importantly we have to create a program for their in-season maintenance. The ULTRASLIDE has been a perfect fit for meeting these needs given that it provides 24-7 access to a training mechanism and is versatile in function to support a variety of training needs. This one tool can address the needs of many.

U: Having incorporated the ULTRASLIDE Slideboard into your training and conditioning, do you find that it supports conditioning in one central area or multiple area(s)?

M: The ULTRASLIDE is a training tool we use for many areas of our training. It’s not just great for our metabolic systems with interval work and lateral sliding; we incorporate it into all of our upper and lower body mobility/stability movements and torso stability patterns (for the core).

U: What differences in performance did you notice after you began using the ULTRASLIDE in a more targeted way?

M: Based upon periodizing programs with and without loads on the upper body (using weight vests and med balls), our skiers were able to hold their turns with more power and stability.

U: Why do you think the ULTRASLIDE is most effective for skiers?

M: The ULTRASLIDE is the best training tool that mimics the lateral demands placed on the body while skiing. The slideboard bumpers are sturdy and allow the athlete to achieve speed and access the same force they leverage in competition. The bumpers really force the athlete to load their inside hip during the push-off which directly translates to loading the inside hip while initiating the turn in the true competitive environment.

U: What is your go-to exercise or routine when utilizing the ULTRASLIDE?

M: At PerformancEDU, one of our go to movements with the ULTRASLIDE are reverse loaded lunges. You get the best of both worlds for great single leg strength and upper body stability.

Why is our BOOTIE (glutes) important?

When coming into PerformancEDU Training Facility, one of the first things we breakdown is glute activation (which means, how do we get our bootie on fire).  After studying McGill and Clark, they put this in perspective through simple questions and an easy answer:  Are the glutes weak because the psoas is tight, or is the psoas tight because the glutes are weak? It may be a classic interdependent, chicken-and-egg scenario. Either way, proper strengthening of the glutes will be the best cure.Boyle, Michael (2011-12-05). Advances in Functional Training (Kindle Locations 2024-2026). On Target Publications. Kindle Edition.

Being able to remedy non firing glute function, the client first needs to activate the core. This can be done in a quadruped position so we are not able to fire the hamstrings down to the calves.  Great description said by Shirley Sahrmann: Sahrmann describes the biomechanical explanation by citing the lower insertion point of the hamstrings on the femur. If the hamstrings are consistently called upon to be the primary hip extensor, the result will be anterior hip pain in addition to hamstring strains. The anterior hip pain is a result of the poor angle of pull of the hamstrings when used as a hip extensor. Boyle, Michael (2011-12-05). Advances in Functional Training (Kindle Locations 2031-2034). On Target Publications. Kindle Edition.

We see more and more injuries due to the inability to fire the glutes, which will lead to these types of injuries:

• Low back pain relates to poor glute max activation, with poor glute function causing excessive lumbar compensation.

• Hamstring strains relate to poor glute max activation.

• Anterior hip pain relates to poor glute max activation. This relates to the poor biomechanics of hamstrings as hip extensors.

• Anterior knee pain relates to poor glute medius strength or activation.

At PerformancEDU Training Facility we perform glute activation at the beginning of every session to develop awareness of the glutes, but more importantly turn them on for the upcoming training session.

 Marc Digesti USAW | Director of Performance at PerformancEDU


Why are my hips so TIGHT?

hip-pain-hip-flexorGray Cook says it best: Hip mobility is something we loose. As infants we are born with crazy hip mobility. Watching my little nephew Enzo put his feet in his mouth, and roll into a full squat with his bootie touching the ground is truly amazing to watch as a performance coach, but lets be real, we loose this very quickly.  We tend to be very long and week on our backside muscles, and very short and strong on our front side.  We see this a lot with our executive types of clientele which sit for excessive amounts of time. This will place the spine into flexion, which will make the glutes long and weak.  This is what causes all of us to have tight hip flexors.



What causes the muscles to be tight?

  1. Soft Tissue Mobility Restrictions
  2. Muscular Restrictions
  3. Capsular Restrictions
  4. Muscular Mobility
  5. Limited Range of Motion
  6. Lack of extension for the Glute to fire in the Hip
  7. Lack of flexion in the Psoas

How can we work on these limitations?

  1. Static Stretching
  2. Active Stretching-Low Loading

Remember…….if we can get stability in our core, this will allow us to gain active hip mobility.

 Marc Digesti USAW | Director of Performance at PerformancEDU


What is the “Core” and how do we Stabilize it?

2013-05-09 14.31.18

Grant Korgan Single Arms Stability Pushouts

It is almost certain every athlete or client which comes in during their initial evaluation always has a goal of getting a “six pack” or a strong core. Usually their knowledge of the “core” stems from what they are told from their coaches or from what they have read in health and fitness magazines. We always like to challenge our clients and athletes to the “how’s and why’s” to each and every session, this includes the initial evaluation. We usually as this question “what is your definition of a strong core?”  Typical client responses:

  • Ability to do 100 crunches
  • Planking for 10 minutes
  • Having 6 pack abs

There is so much going into the core (terminology, movements, progressions, understanding the anterior and posterior core), but I am just going to stick with the basics and describe what the core is designed for.  Lets define core stability, it is the ability to create movement in the arms (upper extremities) and legs (lower extremities) with out compensating the spine and or pelvis into movement.  “In the broadest sense allowing force to move from the ground through the hips, spine or scapulothoracic joints without energy leaks. Energy leaks are defined as points at which energy is lost during the transfer of force from the ground, and are a result of the body’s inability to stabilize a particular joint. Torso strength encompasses core stability, hip stability and shoulder stability, and most importantly, the ability to move force from the ground to the extremities while maintaining stability in the aforementioned areas (Boyle, Michael (2011-12-05). Advances in Functional Training).”

Core training goes much deeper than non weight bearing crunches and having six pack abs. Its the ability to relate body weight and load bearing movements while being able to create stability in a safe and effective manner.


Marc Digesti | Director of Performance at PerformancEDU


Why are chopping and lifting movements important in EDU’s corrective program?

Marc Digesti USAW | Director of Performance at PerformancEDU

The chop and lift represent distinct rotational and diagonal movements that mimic the functional patterns occurring in activities of sport and daily living.  The chop and lift motions are excellent at recruiting the musculature of the core (foundation) either for mobility or stability.

The use of full kneeling and half kneeling postures during the chop and lift patterns add another dimension to the functional assessment and training.  After following the rolling patterns (which we will talk about in our next blog), full and half kneeling postures are the next developmental steps on our progressions to function.

The next and highest level is going to be standing or other functional postures which will offer to challenge our stability systems (neuromuscular, proprioception/coordination etc).  We call our full and half kneeling postures “transitions to stability.”  These postures will stress or recruit the smaller stabilizing muscles of the core and lower quarters.  The standing postures will offer a wide and adaptable base of support that will offer all of the lower quarters/half  extremity of the kinetic chain.

Here is a variation of full kneeling and half kneeling chopping and lifting movements. They can be administered either with thera bands, cook bands or Keiser equipment:

Full Kneeling lifting with chop bar Half Kneeling Chop with Chop Bar


Benefits of Cold and Hot Water HydroTherapy

Human Kinetics/ News and Exerpts: Hydrotherapy used to enhance recovery from competition

Despite the widespread integration of hydrotherapy into an athlete’s postexercise recovery regime, information regarding these interventions is largely anecdotal. Although a number of physiological responses to water immersion are well researched, the underlying mechanisms related to postexercise recovery are poorly understood. The human body responds to water immersion with changes in cardiac response, peripheral resistance, and blood flow (Wilcock et al. 2006). In addition, both hydrostatic pressure and temperature of the immersion medium may influence the success of different hydrotherapy interventions (Wilcock et al. 2006).

Immersion of the body in water can result in an inward and upward displacement of fluid from the extremities to the central cavity due to hydrostatic pressure. As identified by Wilcock and colleagues (2006), the resulting displacement of fluid may increase the translocation of substrates from the muscle. Therefore, postexercise edema may be lessened and muscle function maintained. Another physiological response to water immersion is an increase in stroke volume, which has been shown to increase cardiac output.

Although the effects of hydrostatic pressure exerted on the body during water immersion may be beneficial, the temperature of water that the body is exposed to is also thought to influence the success of such recovery interventions. The main physiological effect of immersion in cold water is a reduction in blood flow due to peripheral vasoconstriction (Meeusen and Lievens 1986). In contrast, immersion in hot water increases blood flow via peripheral vasodilation (Bonde-Petersen et al. 1992; Knight and Londeree 1980).

Cold Water Immersion

Cryotherapy (meaning “cold treatment,” often in the form of an ice pack) is the most commonly used treatment for acute soft tissue injuries, given its ability to reduce the inflammatory response and alleviate spasm and pain (Eston and Peters 1999; Meeusen and Lievens 1986; Merrick et al. 1999). Multiple physiological responses to various cooling methods have been observed, including a reduction in heart rate and cardiac output and an increase in arterial blood pressure and peripheral resistance (Sramek et al. 2000; Wilcock et al. 2006). Additional responses include a decrease in core and tissue temperature (Enwemeka et al. 2002; Lee et al. 1997; Merrick et al. 2003; Yanagisawa et al. 2007), acute inflammation (Yanagisawa et al. 2004), and pain (Bailey et al. 2007; Washington et al. 2000) and an improved maintenance of performance (Burke et al. 2000; Yeargin et al. 2006). Merrick and colleagues (1999) suggested that cryotherapy is an effective method for decreasing inflammation, blood flow, muscle spasm, and pain as well as skin, muscular, and intra-articular temperatures.

The use of cryotherapy for the treatment of muscle damage and exercise-induced fatigue has been investigated with varying findings. Eston and Peters (1999) investigated the effects of cold water immersion (of the exercised limb in 15 °C for 15 min) on the symptoms of exercise-induced muscle damage following strenuous eccentric exercise. The muscle-damaging exercise consisted of eight sets of five maximal isokinetic contractions (eccentric and concentric) of the elbow flexors of the dominant arm (0.58 rad · s–1and 60 s rest between sets). The measures used to assess the presence of exercise-induced muscle damage included plasma CK concentration, isometric strength of the elbow flexors, relaxed arm angle, local muscle tenderness, and upper arm circumference. Eston and Peters (1999) found CK activity to be lower and relaxed elbow angle to be greater for the cold water immersion group on days 2 and 3 following the eccentric exercise, concluding that the use of cold water immersion may reduce the degree to which the muscle and connective tissue unit becomes shortened after strenuous eccentric exercise (Eston and Peters 1999).

Bailey and colleagues (2007) investigated the influence of cold water immersion on indices of muscle damage. Cold water immersion (or passive recovery) was administered immediately following a 90 min intermittent shuttle run protocol; rating of perceived exertion (RPE), muscular performance (maximal voluntary contraction of the knee extensors and flexors), and blood variables were monitored prior to exercise, during recovery, and following recovery for 7 days. The authors concluded that cold water immersion was a highly beneficial recovery intervention, finding a reduction in muscle soreness, a reduced decrement of performance, and a reduction in serum myoglobin concentration 1 h following exercise (Bailey et al. 2007). However, further values across the 7-day collection period were not cited, and CK response was unchanged regardless of intervention. Lane and Wenger (2004) investigated the effects of active recovery, massage, and cold water immersion on repeated bouts of intermittent cycling separated by 24 h. Cold water immersion had a greater effect compared with passive recovery, active recovery, and massage on recovery between exercise bouts, resulting in enhanced subsequent performance (Lane and Wenger 2004). This is an important investigation, as most studies in the area of cold water immersion have been conducted using muscle damage models or recovery from injury. Despite these promising results, some studies have found negligible changes when investigating the recovery effects of cold water immersion (Paddon-Jones and Quigley 1997; Sellwood et al. 2007; Yamane et al. 2006).

In a randomized controlled trial, Sellwood and colleagues (2007) investigated the effect of ice-water immersion on delayed-onset muscle soreness (DOMS). Following a leg extension exercise task (5 ×10 sets at 120% concentric 1RM), participants performed either 3 × 1 min water exposure separated by 1 min in either 5 °C or 24 °C (control) water. Pain, swelling, muscle function (one-leg hop for distance), maximal isometric strength, and serum CK were recorded at baseline, 24, 48, and 72 h after damage. The only significant difference observed between the groups was lower pain in the sit-to-stand test at 24 h postexercise in the ice-water immersion group (Sellwood et al. 2007). In accordance with Yamane and colleagues (2006), only the exercised limb was immersed at a temperature of 5 °C. In this study, ice-water immersion was no more beneficial than tepid water immersion in the recovery from DOMS (Yamane et al. 2006). Paddon-Jones and Quigley (1997) induced damage in both arms (64 eccentric elbow flexion), and then one arm was immersed in 5 °C water for 5 × 20 min, with 60 min between immersions, while the other served as a control. No differences were observed between arms during the next 6 days for isometric and isokinetic torque, soreness, and limb volume (Paddon-Jones and Quigley 1997). In the aforementioned studies, cold water immersion appeared to be an ineffective treatment, specifically when immersing an isolated limb in 5 °C water.

Only one study has investigated the effect of cold water immersion on training adaptation. Yamane and colleagues (2006) investigated the influence of regular postexercise cold water immersion following cycling or handgrip exercise. Exercise tasks were completed 3 to 4 times per week for 4 to 6 weeks, with cooling protocols consisting of limb immersion in 5 °C (leg) or 10 °C (arm) water. The control group showed a significant training effect in comparison to the treatment group, and the authors concluded that cooling was ineffective in inducing molecular and humoral adjustments associated with specified training effects (e.g., muscle hypertrophy, increased blood supply, and myofibril regeneration).

Despite these findings, the majority of research supports the notion that cold water immersion is effective in reducing symptoms associated with DOMS (Eston and Peters 1999), repetitive high-intensity exercise (Bailey et al. 2007; Lane and Wenger 2004), and muscle injury (Brukner and Khan 1993). A more refined investigation into the individual components of a specific recovery protocol is needed to reveal the effect of varying the duration of exposure, the temperature, and the medium used, whether it is ice, air, or water. In addition, training studies are required to investigate the effectiveness of such interventions on training adaptations.

Hot Water Immersion

The use of heat as a recovery tool has been recommended to increase the working capacity of athletes (Viitasalo et al. 1995) and assist in the rehabilitation of soft tissue injuries and athletic recovery (Brukner and Khan 1993; Cornelius et al. 1992). The majority of hot water immersion protocols are performed in water warmer than 37 °C, resulting in an increase in muscle and core body temperature (Bonde-Petersen et al. 1992; Weston et al. 1987). The physiological effects of immersion in hot water remain to be elucidated. One of the main physiological responses associated with exposure to heat is increased peripheral vasodilation, resulting in increased blood flow (Bonde-Petersen et al. 1992; Wilcock et al. 2006).

The effect of hot water immersion on subsequent performance is also poorly understood. Only one study has investigated the effect of hot water immersion on postexercise recovery. Viitasalo and colleagues (1995) incorporated three 20 min warm (~37 °C) underwater water-jet massages into the training week of 14 junior track-and-field athletes. The results indicated an enhanced maintenance of performance (assessed via plyometric drop jumps and repeated bounding) following the water treatment, indicating a possible reduction in DOMS. However, significantly higher CK and myoglobin concentrations were observed following the water treatment, suggesting either greater damage to the muscle cells or an increased leakage of proteins from the muscle into the blood. Viitasalo and colleagues (1995) concluded that combining underwater water-jet massage with intense strength training increases the release of proteins from the muscle into the blood, while enhancing the maintenance of neuromuscular performance (Viitasalo et al. 1995).

Evidence to support these findings is lacking, and the use of hot water immersion for recovery has received minimal research attention. Despite the hypothesized benefits of this intervention, anecdotal evidence suggests that hot water immersion is not widely prescribed on its own or as a substitute for other recovery interventions. Speculation surrounds the possible effects, timing of recovery, and optimal intervention category (e.g., following which type or intensity of exercise) for the use of hot water immersion.

Contrast Water Therapy

During contrast water therapy, athletes alternate between heat exposure and cold exposure by immersion in warm and cold water, respectively. This therapy has frequently been used as a recovery intervention in sports medicine (Higgins and Kaminski 1998) and is commonly used within the sporting community. Although research investigating contrast water therapy as a recovery intervention for muscle soreness and exercise-induced fatigue is limited in comparison to that for cold water immersion, several researchers have proposed possible mechanisms that may support the use of contrast water therapy. Higgins and Kaminski (1998) suggested that contrast water therapy can reduce edema through a pumping action created by alternating peripheral vasoconstriction and vasodilation. Contrast water therapy may bring about other changes such as increased or decreased tissue temperature, increased or decreased blood flow, changes in blood flow distribution, reduced muscle spasm, hyperemia of superficial blood vessels, reduced inflammation, and improved range of motion (Myrer et al. 1994). Active recovery has traditionally been considered superior to passive recovery. Contrast water therapy may elicit many of the same benefits of active recovery and may prove to be more beneficial, given that contrast water therapy imposes fewer energy demands on the athlete (Wilcock et al. 2006).

Contrast water therapy has been found to effectively decrease postexercise lactate levels (Coffey et al. 2004; Hamlin 2007; Morton 2006; Sanders 1996). After conducting a series of Wingate tests, investigators found that blood lactate concentrations recovered at similar rates when using either contrast water therapy or active recovery protocols and that after passive rest blood lactate removal was significantly slower (Sanders 1996). Coffey and colleagues (2004) investigated the effects of three different recovery interventions (active, passive, and contrast water therapy) on 4 h repeated treadmill running performance. Contrast water therapy and active recovery reduced blood lactate concentration by similar amounts after high-intensity running. In addition, contrast water therapy was associated with a perception of increased recovery. However, performance during the high-intensity treadmill running task returned to baseline levels 4 h after the initial exercise task regardless of the recovery intervention performed.

In a more recent study investigating the effect of contrast water therapy on the symptoms of DOMS and the recovery of explosive athletic performance, recreational athletes completed a muscle-damaging protocol on two separate occasions in a randomized crossover design (Vaile et al. 2008a). The two exercise sessions differed only in recovery intervention (contrast water therapy or passive recovery/control). Following contrast water therapy, isometric force production was not significantly reduced below baseline levels throughout the 72 h data collection period; however, following passive recovery, peak strength was significantly reduced from baseline by 14.8% ± 11.4% (Vaile et al. 2008a). Strength was also restored more rapidly within the contrast water therapy group. Thigh volume measured immediately following contrast water therapy was significantly less than that following passive recovery, indicating lower levels of tissue edema. These results indicate that symptoms of DOMS and restoration of strength are improved following contrast water therapy compared with passive recovery (Vaile et al. 2007; Vaile et al. 2008a). However, Hamlin (2007) found contrast water therapy to have no beneficial effect on performance during repeated sprinting. Twenty rugby players performed two repeated sprint tests separated by 1 h; between trials subjects completed either contrast water therapy or active recovery. Although substantial decreases in blood lactate concentration and heart rate were observed following contrast water therapy, compared with the first exercise bout, performance in the second exercise bout was decreased regardless of intervention (Hamlin 2007). Therefore, although contrast water therapy appears to be beneficial in the treatment of DOMS, it may not hasten the recovery of performance following high-intensity repeated sprint exercise.

The physiological mechanisms underlying the reputed benefits remain unclear. Temperatures for contrast water therapy generally range from 10 to 15 °C for cold water and 35 to 38 °C for warm water. It is evident that contrast water therapy is being widely used; however, additional research needs to be conducted to clarify its optimal role and relative efficacy.

Pool Recovery

Pool or beach recovery sessions are commonly used by team sport athletes in an attempt to enhance recovery from competition. Almost all Australian Rules, Australian Rugby League, and Australian Rugby Union teams use pool recovery sessions to perform active recovery in a non–weight-bearing environment. These sessions are typically used to reduce muscle soreness and stiffness and therefore are thought to be effective in sports that involve eccentric muscle damage or contact. Sessions often include walking and stretching in the pool and occasionally some swimming.

Dawson and colleagues (2005) investigated the effect of pool walking as a recovery intervention immediately following a game of Australian Rules Football. Pool walking was compared with contrast water therapy, stretching, and passive recovery (control) to determine the effect on subjective ratings of muscle soreness, flexibility (sit and reach test), and power (6 s cycling sprint and vertical jumps) assessed 15 h after the game. For all four recovery interventions, muscle soreness was increased 15 h after the game; however, only pool walking resulted in a significant reduction in subjective soreness. There was a trend for lower flexibility and power scores; however, this was only significant in the control trial. Although there were no differences between the three recovery interventions with respect to flexibility and power, players subjectively rated pool walking as the most effective and preferable strategy. The authors speculated that the active, light-intensity exercise with minimal impact stress or load bearing, combined with the hydrostatic pressure, may have enhanced recovery (Dawson et al. 2005).

Read more from Physiological Tests for Elite Athletes, Second Edition, by Australian Institute of Sport, Rebecca Tanner and Christopher Gore.


One tool EDU uses for POWER


EDU has built a very good relationship with Keiser through Jay Keiser and Athletic Systems. The past 1.3 years, EDU has been able to aquire 5 Keiser pieces:

  • Performance Trainer
  • Keiser Air Squat
  • 2 Keiser m3 bikes
  • 1 Keiser m3+ bike

With Keiser, we are able to dive into Air Resistance rather than just using barbells and iron.

You can find the full article on Keiser’s website, but here is a little back ground of what EDU uses on a daily basis:

Keiser was invented to provide high resistance with very little inertia (moving mass), and without the dependence upon gravity. The elimination of a weight stack reduces the mass; therefore the force due to acceleration is virtually eliminated, which leaves only pure variable resistant force. The reduction of the acceleration forces and the elimination of dependence on gravity allow the variable resistance strength curve to remain consistent over a wide range of training speeds. Read  the full research study and judge for yourself.

Keiser Air Resistance Advantages over Weight Stack Provided Resistance

- No shock loading to connective tissues and joints.
- The ability to change resistance at any time w/ fingertip controls.
- A consistent variable resistance curve at any speed.
- Offers privacy of workload.
- Resistance changeable at 1/10 pound increments on Infinity Series
- Large Digital display/Counts repetitions.
- Equipment of choice in over 70 peer-reviewed research studies on training.


Plyometrics breakdown and POWER Q&A


What are Plyometrics?

  • Plyometrics are drills aimed at linking sheer strength and speed of movement to produce an explosive-reactive type of movement.
  • Classically used to describe jumping/depth jumping drills
  • Definition expanded to include ANY drill utilizing stretch-shorten cycle to produce explosive reaction:
    • Jumping
    • Medicine Ball
    • Resistance Training

What are the Benefits of Power Training?

  • Rate of force development
  • Elasticity
  • Dynamic stabilization
  • Movement skills

What are the Concerns of Power Training?

  • Tissue loading
  • High force traveling through compensatory motion

How Can We Train for Speed while emphasizing Power?

  • Assisted Drills
  • Resisted Drills
  • Linear and Multi-directional Movements

What types of Methods can we use to train for Power?

  • Tempos
  • Olympics
  • Contrasts
  • Complex
  • Bands
  • Chains

Marc Digesti USAW | Director of Performance at PerformancEDU of Reno



What is PerformancEDU’s PT Transition Program?


Director of Performance Marc Digesti

Director of Performance Marc Digesti

Mission Statement: PerformancEDU’s training philosophy is to examine the human body through movement and implement ways to decrease injury and increase performance. PerformancEDU evaluates the body while relating to functional movement, understands the bodies directional movement patterns, and prescribe and implement specific movements and progressions to maximize athletic performance in sport and life.

PerformancEDU remains true to the education placed on performance during each session.  PerformancEDU will provide you with the tools you need to perform at the highest level in life or on the field.  PerformancEDU is dedicated to helping others by:

  1. Improving performance
  2. Decreasing injury potential
  3. Motivating through education

The PT Transition Model would include a 4-6 week transition program post clearance from the PT which include:

  • Objective Numbers
    • Collaboration between PT and PerformancEDU through weekly reports
    • Functional Movement Screen
      • Performance Evaluation based on movement quality
      • Quality of movement patterns (mechanics)
    • Body Composition
      • Body Fat Testing through 7 site caliper pinch
      • Documentation of weight
    • Goals
    • Findings will determine the optimal training strategy for each client
  • Progressions
    • Activity will be broken down into Phases 1,2,3  (wk 1-4):
      • Glute Activation
      • Movement Prep
      • Pillar Strength
      • Elasticity
      • Strength
      • Energy System Development
  • Attention to Detail
    • Instruction
      • Verbal-Description
      • Visual-Demonstration
    • Analyzing
      • Observation
        • Front
        • Back
        • Side
        • Scanning
      • Questioning
        • Evaluate patients understanding
        • Engage the patient
    • Intervention
      • Cueing the patient
        • Verbal
        • Visual
        • Tactile
      • Modification of the movement
        • Quality over Quantity
        • Determining the most effective modifications

What are we going to prepare the client with?

  • Improve Performance
    • Lifestyle Enhancement
  • Decrease Injury Potential
    • Lifestyle Enhancement
  • Motivate through Education
    • Creating success
  • Work to Success
    • Attaining Goals

For more information regarding EDU’s PT Transition Program, email us at


PerformancEDU Newest Equipment Addition: Keiser PT

ImageExperience total versatility, at any speed! Unilaterally and bilaterally work any muscle group safely at any angle, at any resistance, at any speed through the range of motion. Resistance is always consistent, unaffected by speed of exercise. By utilizing the power of Keiser’s free moving pneumatic technology you can safely increase your power output as speed increases. This allows for intense functional workouts with zero shock load to muscles, connective tissues and joints.

Perfect for group, target, and core stability training! With multi user lines like the Infinity Six Pack and Triple Trainer you can use one machine to provide a workout that would take 9 machines from anyone else. Even better, the machines can serve every body type that may use your facility. Short, tall, male, female, husky, slender, all body shapes and sizes are comfortable using this equipment.

Keiser machines fit a wide range of needs! Physical therapists long ago discovered Keiser equipment. It is ideal for everyone, from the orthopedic patient through the performance athlete. Countless professional sports teams, performance training facilities, sports medicine professionals, researchers, older adult fitness centers, senior living communities, corporate fitness centers, and physical therapists trust the Keiser brand.


Get every new post delivered to your Inbox.

Join 6,620 other followers